Seeking a Vertex of the Planar Matching Polytope in NC
نویسندگان
چکیده
For planar graphs, counting the number of perfect matchings (and hence determining whether there exists a perfect matching) can be done in NC [4, 10]. For planar bipartite graphs, finding a perfect matching when one exists can also be done in NC [8, 7]. However in general planar graphs (when the bipartite condition is removed), no NC algorithm for constructing a perfect matching is known. We address a relaxation of this problem. We consider the fractional matching polytope P(G) of a planar graph G. Each vertex of this polytope is either a perfect matching, or a half-integral solution: an assignment of weights from the set {0, 1/2, 1} to each edge of G so that the weights of edges incident on each vertex of G add up to 1 [6]. We show that a vertex of this polytope can be found in NC, provided G has at least one perfect matching to begin with. If, furthermore, the graph is bipartite, then all vertices are integral, and thus our procedure actually finds a perfect matching without explicitly exploiting the bipartiteness of G.
منابع مشابه
Some perfect matchings and perfect half-integral matchings in NC
We show that for any class of bipartite graphs which is closed under edge deletion and where the number of perfect matchings can be counted in NC, there is a deterministic NC algorithm for finding a perfect matching. In particular, a perfect matching can be found in NC for planar bipartite graphs and K3,3-free bipartite graphs via this approach. A crucial ingredient is part of an interior-point...
متن کاملPlanar Graph Perfect Matching is in NC
Is perfect matching in NC? That is to say, is there a deterministic fast parallel algorithm for it? This has been an outstanding open question in theoretical computer science for over three decades, ever since the discovery of RNC matching algorithms. Within this question, the case of planar graphs has remained an enigma: On the one hand, counting the number of perfect matchings is far harder t...
متن کاملDistributive Lattices from Graphs
Several instances of distributive lattices on graph structures are known. This includes c-orientations (Propp), α-orientations of planar graphs (Felsner/de Mendez) planar flows (Khuller, Naor and Klein) as well as some more special instances, e.g., spanning trees of a planar graph, matchings of planar bipartite graphs and Schnyder woods. We provide a characterization of upper locally distributi...
متن کاملPlanar Perfect Matching is in NC
Consider a planar graph G = (V,E) with polynomially bounded edge weight function w : E → [0, poly(n)]. The main results of this paper are NC algorithms for the following problems: • minimum weight perfect matching in G, • maximum cardinality and maximum weight matching in G when G is bipartite, • maximum multiple-source multiple-sink flow in G where c : E → [1, poly(n)] is a polynomially bounde...
متن کاملThe augmented Zagreb index, vertex connectivity and matching number of graphs
Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004